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Vision 

 Establish a predictive approach for generating the 
needed data (cross sections) to describe the energy 
exchange of thermal neutrons in matter 

 
 Various applications: 
 

 Nuclear criticality safety 
 
 Nuclear reactor design 
 
 Neutron beam spectral shaping (i.e., filtering) 
 
 Neutron source (cold, ultracold, etc.) characterization 
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() – density of states (e.g., phonon frequency distribution) 

The scattering law is the Fourier transform of a correlation function 



Methods 

 Several approaches can be used to extract the 
atomic density of states, scattering law and 
eventually the cross sections 

 
 Empirical atomic force analysis combined with dynamical 

matrix calculations 
 Basis of current ENDF/B libraries 

 
 Ab initio Quantum (DFT) methods combined with dynamical 

matrix calculations 
 
 Classical Molecular Dynamics (MD) methods combined with 

correlation function analysis 
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Density of States G(E) 

Energy Transfer (meV)
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Molecular Dynamics Models 
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Materials Studied at NCSU 
 Graphite, Beryllium (improvement on ENDF/B-VII) 

 Treatment of nuclear graphite (porous system) 
 Including coherent inelastic 

 

 Silicon dioxide (New, contributed to NNDC/ENDF) 
 Support criticality safety analysis 

 

 Silicon carbide (New, contributed to NNDC/ENDF) 
 Support advanced fuel cycle applications (e.g., FCM fuels) 

 

 Thorium hydride, uranium-zirconium hydride, calcium 
hydride (New) 

 

 Sapphire and bismuth (New) 
 Thermal neutron filters 

 

 Solid methane (predictive analysis) 
 Cold neutron moderator 
 Captured phase I to II transformation upon cooling below 22 K 



Lucite 



Methyl Methacrylate Monomer 

 C5O2H8 

 3 different species of 
Hydrogen atoms 

 Group 1:  At the end of the 
longest chain 

 Group 2:  At the end of the 
shorter chain 

 Group 3:  On the backbone 
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 Build Polymer Model 



Lucite MD Model 

 Amorphous poly(methyl 
methacrylate) polymer  

 Molecular weight, 
minimum, 37,000 Mw 
(370 monomers long)  

 5 polymer chains 



MD Potential Function 

Dreiding force field 
 
L-J (VDW) term: 
 
Fitted for the system to 
match the experimental 
density 
 

𝐸 = 𝐸𝑣𝑑𝑤 + 𝐸𝑄 + 𝐸𝐵 + 𝐸𝐴 + 𝐸𝑇 

𝐸𝑣𝑑𝑤 = 𝐴𝑅
−12 − 𝐵𝑅−6 

𝐸𝑄 = 𝐶𝑄𝑖𝑄𝑗 𝜖𝑅𝑖𝑗  

𝐸𝐵 =
1
2 𝑘0 𝑅 − 𝑅0

2 

𝐸𝐴 =
1
2 𝐾𝐼𝐽𝐾 𝑐𝑜𝑠𝜃𝐼𝐽𝐾 − 𝑐𝑜𝑠𝜃

2
 

𝐸𝑇 = 𝐸𝐼𝐽𝐾𝐿 =
1
2 𝑉𝐽𝐾 1 − 𝑐𝑜𝑠 𝑛𝐽𝐾 𝜑 − 𝜑𝐽𝐾

0  
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High Pressure, 

High Temperature 

Cycles 

Potential Parameterization 
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Computational Approach 
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Lucite VACF 
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Density of States 
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S(α,β) – Scattering Law 



Differential Cross Section 



Total Inelastic Scattering Cross Section 



Total Scattering Cross Section 



ACE Library 



Polyethylene 



Polyethylene MD Model 

 Partially amorphous, 
partly crystalline 
structure, made up of 
ethylene monomers, C2H4 

 Polyethylene is the most 
common plastic, 
ubiquitously used for 
packaging, bags and 
bottles 

 Molecular weight,  
10,000-100,000 Mw (at 
least 350 monomers 
long)  



Dihedral barrier term: 
 
Fitted for the system to 
match the experimental 
amorphous/crystal 
composition 
 

𝐸 = 𝐸𝑣𝑑𝑤 + 𝐸𝑄 + 𝐸𝐵 + 𝐸𝐴 + 𝐸𝑇 

𝐸𝑣𝑑𝑤 = 𝐴𝑅
−12 − 𝐵𝑅−6 

𝐸𝑄 = 𝐶𝑄𝑖𝑄𝑗 𝜖𝑅𝑖𝑗  

𝐸𝐵 =
1
2 𝑘0 𝑅 − 𝑅0

2 

𝐸𝐴 =
1
2 𝐾𝐼𝐽𝐾 𝑐𝑜𝑠𝜃𝐼𝐽𝐾 − 𝑐𝑜𝑠𝜃

2
 

𝐸𝑇 = 𝐸𝐼𝐽𝐾𝐿 =
1
2 𝑉𝐽𝐾 1 − 𝑐𝑜𝑠 𝑛𝐽𝐾 𝜑 − 𝜑𝐽𝑘

0  

MD Potential Function 



Parameterization 

Dihedral barrier of 2 
kcals/mole 

 

~ 50% crystallinity 

Dihedral barrier of 
3 kcals/mole 

 

~100% crystallinity 





Summary 

Developed a modern approach for thermal 
neutron cross section calculations based on the 
use of atomistic simulations 
 Ab initio quantum mechanics 

 Molecular dynamics 
 

 The approach is predictive 
 New materials 

 All states of matter (solid, liquid, gas) 

 Imperfect structure 
 

 Evaluating NCSP materials 

 Silicon dioxide completed 

 Lucite completed 

 Polyethylene initiated 



Continue to support the data needs of NCSP 
and the nuclear science and engineering 
community 

 

Develop the “next generation” platform for 
thermal neutron scattering analysis 

 

 Free from approximations 

 Flexible to use various types of input 

 Able to seamlessly integrate with neutron transport 
tools  

 

Future 


